
 1

A	guided	tour	to	PHP	
©	Oge	Marques,	PhD	-	2016	

Introduction	

This	document	guides	you	through	the	most	important	aspects	of	PHP.	
It	is	structured	as	a	step-by-step	guide.		
It	is	best	that	you	follow	it	in	the	intended	sequence.	
	

Part	1-	Setup	
1. Test	your	PHP	setup	at	the	lamp.cse.fau.edu	server	using	the	example	below	(save	it	as	

test.php):	
<?php

echo ‘Hello PHP!’;
?>

	
2. (OPTIONAL)	Choose	*one*	Apache/MySQL/PHP	local	server	solution	for	your	personal	

computer	/	OS.	Possible	alternatives	include:	XAMPP,	EasyPHP,	WAMPServer,	MAMP	
(Pro),	and	many	others.	

3. (OPTIONAL)	Download,	install,	configure,	and	test	your	WAMP/LAMP/MAMP	server	
setup.	

4. Check	which	version	of	PHP	is	being	used	in	your	local	setup	(as	well	as	its	settings)	and	
compare	it	with	the	one	being	used	at	the	lamp.cse.fau.edu	server.	Use	the	script	below	
(save	it	as	info.php):	

<?php

phpinfo();

?>

5. Select	an	editor	/	IDE	for	PHP	development.	Here	are	some	recommendations:	
• Atom	(https://atom.io/)	
• Brackets	(http://brackets.io/)	
• Sublime	Text	(http://www.sublimetext.com/)	
• PhpStorm	(http://www.jetbrains.com/phpstorm/).	

6. Download	a	zip	file	containing	all	examples	in	the	(Nixon	2014)	book1,	from	
http://lpmj.net/	

7. Keep	good	PHP	references	handy,	particularly	http://php.net/	.	

1 “Learning	PHP,	MySQL,	JavaScript,	CSS	&	HTML5”	4th	Edition	By	Robin	Nixon		
(O'Reilly	2014,	ISBN	978-1491918661)

 2

Part	2-	Basic	PHP	
This	part	covers	selected	examples	from	Chapters	3-7	in	the	(Nixon	2014)	book2.	

1. Run	example	3-1	on	your	server	setup;	it	should	display	a	"Hello	world"	message.	
2. Modify	example	3-3	to	add	an	'echo'	for	each	variable	and	run	it	to	check	each	

variable's	contents	displayed	on	screen	and	run	the	modified	version.	

<?php
$mycounter = 1;
echo $mycounter;
echo "
";
$mystring = "Hello";
echo $mystring;
echo "
";
$myarray = array("One", "Two", "Three");
echo $myarray; // not quite what you expected, right?
echo "
";
foreach ($myarray as $item)
{
 echo $item;
 echo "
";
}
?>

3. Run	example	3-4	and	make	sure	you	understand	what	it's	doing	(and	how).	
4. Run	example	3-5	and	make	sure	you	understand	what	it's	doing	(and	how).	
5. Modify	example	3-5	to	add	an	'echo'	to	display	the	entire	array	and	run	the	modified	

version	

<?php
$oxo = array(array('x', ' ', 'o'),
 array('o', 'o', 'x'),
 array('x', 'o', ' '));
echo"<pre>";
foreach ($oxo as $row)
{
 foreach ($row as $symbol)
 echo "$symbol ";
 echo "
";
}
echo"</pre>";
?>

2 “Learning	PHP,	MySQL,	JavaScript,	CSS	&	HTML5”	4th	Edition	By	Robin	Nixon		
(O'Reilly	2014,	ISBN	978-1491918661)

 3

6. Run	examples	3-6	through	3-9	and	make	sure	you	understand	what	they	are	doing	(and	
how).	

7. Run	example	3-10	and	make	sure	you	understand	what	it's	doing	(and	how).	
8. Run	example	3-11	and	make	sure	you	understand	what	it's	doing	(and	how).	
9. Run	examples	3-12	through	3-16	and	make	sure	you	understand	what	they	are	doing	

(and	how).	
10. Run	example	3-17	and	make	sure	you	understand	what	it's	doing	(and	how).	
11. Modify	example	3-17	to	add	an	'echo'	to	display	the	results	of	calling	test()	and	run	the	

modified	version.	

<?php
$temp = "Calling function test()... ";
echo $temp;
test();
echo "
";

$temp = "Calling function test() again... ";
echo $temp;
test();
echo "
";

$temp = "... and again ... ";
echo $temp;
test();
echo "
";

function test()
{
 static $count = 0;
 echo $count;
 $count++;
}
?>

12. Run	examples	4-1	through	4-4	and	make	sure	you	understand	what	they	are	doing	(and	
how).	

13. Run	examples	4-12	through	4-16	and	make	sure	you	understand	what	they	are	doing	
(and	how).	

14. Glance	through	examples	4-17	through	4-36	(they	are	similar	to	what	you've	seen	in	
JavaScript	and	other	languages)	and	make	sure	you	understand	what	they	are	doing	
(and	how).	

15. Run	example	4-37	and	make	sure	you	understand	what	it's	doing	(and	how).	
16. Run	example	5-1	and	make	sure	you	understand	what	it's	doing	(and	how).	
17. Run	examples	5-2	through	5-5	and	make	sure	you	understand	what	they	are	doing	(and	

how).	

 4

18. Glance	through	examples	5-6	through	5-8	and	make	sure	you	understand	the	difference	
between	include,	include_once,	require,	and	require_once.	

19. Run	examples	5-9	through	5-13	and	make	sure	you	understand	what	they	are	doing	
(and	how).	

20. Glance	through	examples	5-14	through	5-20	and	make	sure	you	understand	what	they	
are	doing	(and	how).	

21. Run	example	5-21	and	make	sure	you	understand	what	it's	doing	(and	how).	
22. Glance	through	examples	5-22	through	5-23	and	make	sure	you	understand	what	they	

are	doing	(and	how).	
23. Run	examples	5-24	through	5-27	and	make	sure	you	understand	what	they	are	doing	

(and	how).	
24. Run	examples	6-1	through	6-15	and	make	sure	you	understand	what	they	are	doing	

(and	how).	
25. Run	examples	7-1	through	7-2	and	make	sure	you	understand	what	they	are	doing	(and	

how).	
26. Run	example	7-3	and	make	sure	you	understand	what	it's	doing	(and	how).	
27. Modify	example	7-3	to	display	"Date	is	valid".	
28. Run	example	7-4	and	make	sure	you	understand	what	it's	doing	(and	how).	
29. Locate	the	newly	created	file	(testfile.txt)	in	your	hard	drive.	Is	it	in	the	expected	folder?	

Inspect	its	contents.	Do	they	make	sense?	
30. Run	examples	7-5	through	7-6	and	make	sure	you	understand	what	they	are	doing	(and	

how).	
31. Run	example	7-8	and	make	sure	you	understand	what	it's	doing	(and	how).	
32. Locate	the	newly	created	file	(testfile2.txt)	in	your	hard	drive.	Is	it	in	the	expected	

folder?	Inspect	its	contents.	Do	they	make	sense?	
33. Run	example	7-9	and	make	sure	you	understand	what	it's	doing	(and	how).	
34. Locate	the	newly	created	file	(testfile2.new)	in	your	hard	drive.	Is	it	in	the	expected	

folder?	Inspect	its	contents.	Do	they	make	sense?	
35. Run	example	7-10	and	make	sure	you	understand	what	it's	doing	(and	how).	Did	it	

delete	testfile2.new	successfully?	
36. Run	example	7-11	and	make	sure	you	understand	what	it's	doing	(and	how).	Did	it	

update	the	contents	of	testfile.txt	successfully?	
37. Run	example	7-12	and	make	sure	you	understand	what	it's	doing	(and	how).	Did	it	

update	the	contents	of	testfile.txt	successfully?	
38. Run	example	7-13	and	make	sure	you	understand	what	it's	doing	(and	how).	Did	it	

display	the	contents	of	testfile.txt	successfully?	
39. Run	example	7-14	and	make	sure	you	understand	what	it's	doing	(and	how).	
40. Run	example	7-15	(you	must	rename	it	to	upload.php	first)	and	make	sure	you	

understand	what	it's	doing	(and	how).		
41. Run	example	7-16	(you	must	rename	it	to	upload2.php	first)	and	make	sure	you	

understand	what	it's	doing	(and	how).		
42. Run	example	7-17	and	make	sure	you	understand	what	it's	doing	(and	how).	

 5

Part	3-	MySQL,	MySQLi,	and	PHP	
This	part	covers	selected	examples	from	Chapters	8-10	in	the	(Nixon	2014)	book3.	
	

1. Access your MySQL account on lamp.cse.fau.edu following the instructions at
http://tsg.eng.fau.edu/servers/lamp-cse-fau-edu/accessing-mysql/ and the email
received from TSG at the time your account was created (you will need it for the MySQL
password).

2. Go to https://lamp.cse.fau.edu/phpMyAdmin/, select your default database (it has
your username), and enter the commands from Example 8.3 using the 'SQL' tab.

• Notice that the newly created table (classics) will appear on the left sidebar.
3. Double-check it by typing DESCRIBE classics;
4. Make sure you understand the names, types, and meaning of each field in the table.
5. Add a new column called id to the table classics with autoincrementing, following the

syntax in example 8.5.
6. Delete the table classics with the command DROP TABLE classics;
7. Re-create the table classics using the syntax in example 8.6.
8. Populate the table classics using the syntax in example 8.8.
9. Execute a query to see all contents of the newly populated table: SELECT * FROM

classics;
10. Rename the table: ALTER TABLE classics RENAME pre1900;
11. Rename it again (back to the original name): ALTER TABLE pre1900 RENAME

classics;
12. Change the data type of a column: ALTER TABLE classics MODIFY year

SMALLINT;
13. Add a new column: ALTER TABLE classics ADD pages SMALLINT UNSIGNED;
14. Inspect the results of the last two steps: DESCRIBE classics;
15. Rename a column: ALTER TABLE classics CHANGE type category

VARCHAR(16);
16. Remove a column: ALTER TABLE classics DROP pages;
17. Create an index following the syntax in example 8.10.
18. Delete the table classics with the command DROP TABLE classics;
19. Re-create the table classics using the syntax in example 8.12.
20. Populate the table classics using the syntax in example 8.8 (modified to replace

'type' with 'category').
21. Try to create a new column using the syntax: ALTER TABLE classics ADD isbn

CHAR(13) PRIMARY KEY;
22. You should get an error message (see textbook for explanation)
23. Create and populate a new 'isbn' column with data and using a primary key following the

syntax in Example 8.13.
24. Add a FULLTEXT index to the table 'classics' using: ALTER TABLE classics ADD

FULLTEXT(author,title);
25. Execute the two SELECT statements (one at a time) from Example 8.16.

3 “Learning	PHP,	MySQL,	JavaScript,	CSS	&	HTML5”	4th	Edition	By	Robin	Nixon		
(O'Reilly	2014,	ISBN	978-1491918661)

 6

26. Count the number of rows using: SELECT COUNT(*) FROM classics;
27. Insert a new record following the syntax in Example 8.18.
28. Execute the two SELECT statements (one at a time) from Example 8.19 and make sure

that you understand the differences between them.
29. Remove the last entry: DELETE FROM classics WHERE title='Little

Dorrit';
30. Execute the two SELECT statements (one at a time) from Example 8.21.
31. Execute the three SELECT statements (one at a time) from Example 8.22.
32. Execute the three SELECT statements (one at a time) from Example 8.23.
33. Execute the three SELECT statements (one at a time) from Example 8.24.
34. Execute the two SELECT statements (one at a time) from Example 8.25.
35. Execute the two UPDATE statements (one at a time) from Example 8.26.
36. Execute the two SELECT statements (one at a time) from Example 8.27.
37. Run the query: SELECT category, COUNT(author) FROM classics GROUP BY

category; and try to understand what it does.
38. Create a customers table following the syntax of example 8.28.
39. Execute the SELECT statement from Example 8.29 and notice how it joins information

from both tables in a meaningful way.
40. Repeat the previous step using the syntax SELECT name,author,title FROM

customers NATURAL JOIN classics;
41. Repeat it again, this time using the syntax:

SELECT name,author,title FROM customers
JOIN classics ON customers.isbn=classics.isbn;

42. Do it again, this time using:
SELECT name,author,title from

 customers AS cust, classics AS class WHERE cust.isbn=class.isbn;
43. Execute the three SELECT statements (one at a time) from Example 8.30.

 7

Normalization: basic concepts

44. Look at Table 9.1 (below) and make sure you understand why its design is (highly)
inefficient.

45. Look at Tables 9.2 and 9.3 (below) and make sure you understand why this design is
better than the one in Table 9.1.

Table 9-1. A highly inefficient design for a database table

Author 1 Author 2 Title ISBN
Price
(USD)

Customer
name

Customer
address

Purch.
date

David Sklar Adam
Trachtenberg

PHP
Cookbook

0596101015 44.99 Emma
Brown

1565 Rainbow
Road, Los Angeles,
CA 90014

Mar 03
2009

Danny
Goodman

 Dynamic
HTML

0596527403 59.99 Darren
Ryder

4758 Emily
Drive,
Richmond, VA
23219

Dec 19
2008

Hugh E
Williams

David Lane PHP and
MySQL

0596005436 44.95 Earl B.
Thurston

862 Gregory Lane,
Frankfort, KY
40601

Jun 22
2009

David Sklar Adam
Trachtenberg

PHP
Cookbook

0596101015 44.99 Darren
Ryder

4758 Emily
Drive,
Richmond, VA
23219

Dec 19
2008

Rasmus
Lerdorf

Kevin Tatroe
& Peter
MacIntyre

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane,
Waltham, MA
02154

Jan 16
2009

First Normal Form
For a database to satisfy the First Normal Form, it must fulfill three requirements:

1. There should be no repeating columns containing the same kind of data.

2. All columns should contain a single value.

3. There should be a primary key to uniquely identify each row.

Looking at these requirements in order, you should notice straight away that the Author
1 and Author 2 columns constitute repeating data types. So, we already have a target
column for pulling into a separate table, as the repeated Author columns violate Rule 1.

Second, there are three authors listed for the final book, Programming PHP. In this
table that has been handled by making Kevin Tatroe and Peter MacIntyre share the
Author 2 column, which violates Rule 2—yet another reason to transfer the author
details to a separate table.

However, Rule 3 is satisfied, because the primary key of ISBN has already been created.

Table 9-2 shows the result of removing the Author columns from Table 9-1. Already it
looks a lot less cluttered, although there remain duplications that are highlighted.

212 | Chapter 9: Mastering MySQL

Table 9-2. The result of stripping the author columns from Table 9-1

Title ISBN
Price
(USD) Customer name Customer address Purchase date

PHP Cookbook 0596101015 44.99 Emma Brown 1565 Rainbow Road, Los
Angeles, CA 90014

Mar 03 2009

Dynamic HTML 0596527403 59.99 Darren Ryder 4758 Emily Drive, Richmond,
VA 23219

Dec 19 2008

PHP and MySQL 0596005436 44.95 Earl B. Thurston 862 Gregory Lane, Frankfort, KY
40601

Jun 22 2009

PHP Cookbook 0596101015 44.99 Darren Ryder 4758 Emily Drive, Richmond,
VA 23219

Dec 19 2008

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane, Waltham, MA
02154

Jan 16 2009

The new Authors table, shown in Table 9-3, is small and simple. It just lists the ISBN
of a title along with an author. If a title has more than one author, additional authors
get their own rows. At first you may feel ill at ease with this table, because you can’t
tell at a glance which author wrote which book. But don’t worry: MySQL can quickly
tell you. All you have to do is tell it which book you want information for, and MySQL
will use its ISBN to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author

0596101015 David Sklar

0596101015 Adam Trachtenberg

0596527403 Danny Goodman

0596005436 Hugh E Williams

0596005436 David Lane

0596006815 Rasmus Lerdorf

0596006815 Kevin Tatroe

0596006815 Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify him or her.

In the Authors table, the ISBN numbers will appear in a column that (for the purposes
of speeding up searches) we’ll probably make a key, but not the primary key. In fact,

Normalization | 213

 8

46. Look at Tables 9.4 and 9.5 (below) and make sure you understand why this design is
better than the one in Table 9.2.

47. Look at Tables 9.6 and 9.7 (below) and make sure you understand why this design is
better than the one in Table 9.5.

Table 9-2. The result of stripping the author columns from Table 9-1

Title ISBN
Price
(USD) Customer name Customer address Purchase date

PHP Cookbook 0596101015 44.99 Emma Brown 1565 Rainbow Road, Los
Angeles, CA 90014

Mar 03 2009

Dynamic HTML 0596527403 59.99 Darren Ryder 4758 Emily Drive, Richmond,
VA 23219

Dec 19 2008

PHP and MySQL 0596005436 44.95 Earl B. Thurston 862 Gregory Lane, Frankfort, KY
40601

Jun 22 2009

PHP Cookbook 0596101015 44.99 Darren Ryder 4758 Emily Drive, Richmond,
VA 23219

Dec 19 2008

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane, Waltham, MA
02154

Jan 16 2009

The new Authors table, shown in Table 9-3, is small and simple. It just lists the ISBN
of a title along with an author. If a title has more than one author, additional authors
get their own rows. At first you may feel ill at ease with this table, because you can’t
tell at a glance which author wrote which book. But don’t worry: MySQL can quickly
tell you. All you have to do is tell it which book you want information for, and MySQL
will use its ISBN to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author

0596101015 David Sklar

0596101015 Adam Trachtenberg

0596527403 Danny Goodman

0596005436 Hugh E Williams

0596005436 David Lane

0596006815 Rasmus Lerdorf

0596006815 Kevin Tatroe

0596006815 Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify him or her.

In the Authors table, the ISBN numbers will appear in a column that (for the purposes
of speeding up searches) we’ll probably make a key, but not the primary key. In fact,

Normalization | 213

it cannot be the primary key in this table, because it’s not unique: the same ISBN appears
multiple times whenever two or more authors have collaborated on a book.

Because we’ll use it to link authors to books in another table, this column is called a
foreign key.

Keys (also called indexes) have several purposes in MySQL. The funda-
mental reason for defining a key is to make searches faster. You’ve seen
examples in Chapter 8 in which keys are used in WHERE clauses for
searching. But a key can also be useful to uniquely identify an item.
Thus, a unique key is often used as a primary key in one table, and as a
foreign key to link rows in that table to rows in another table.

Second Normal Form
The First Normal Form deals with duplicate data (or redundancy) across multiple col-
umns. The Second Normal Form is all about redundancy across multiple rows. In order
to achieve Second Normal Form, your tables must already be in First Normal Form.
Once this has been done, Second Normal Form is achieved by identifying columns
whose data repeats in different places and removing them to their own tables.

Let’s look again at Table 9-2. Notice that Darren Ryder bought two books, and there-
fore his details are duplicated. This tells us that the customer columns (Customer
name and Customer address) need to be pulled into their own tables. Table 9-4 shows
the result of removing the two Customer columns from Table 9-2.

Table 9-4. The new Titles table

ISBN Title Price

0596101015 PHP Cookbook 44.99

0596527403 Dynamic HTML 59.99

0596005436 PHP and MySQL 44.95

0596006815 Programming PHP 39.99

As you can see, all that’s left in Table 9-4 are the ISBN, Title, and Price columns for
four unique books—this now constitutes an efficient and self-contained table that sat-
isfies the requirements of both the First and Second Normal Forms. Along the way,
we’ve managed to reduce the information in this table to data closely related to book
titles. The table could also include years of publication, page counts, numbers of re-
prints, and so on, as these details are also closely related. The only rule is that we can’t
put in any column that could have multiple values for a single book, because then we’d
have to list the same book in multiple rows, thus violating Second Normal Form. Re-
storing an Author column, for instance, would violate this normalization.

214 | Chapter 9: Mastering MySQL

However, looking at the extracted Customer columns, now in Table 9-5, we can see that
there’s still more normalization work to do, because Darren Ryder’s details are still
duplicated. It could also be argued that First Normal Form Rule 2 (all columns should
contain a single value) has not been properly complied with, because the addresses
really need to be broken into separate columns for Address, City, State, and Zip code.

Table 9-5. The Customer details from Table 9-2

ISBN Customer name Customer address Purchase date

0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009

0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009

0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596006815 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 shows the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo that
is the table’s primary key, and that will most likely have been created using AUTO_INCRE
MENT. All the parts of the customers’ addresses have also been separated into distinct
columns to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

At the same time, in order to normalize Table 9-6, it was necessary to remove the
information on customer purchases, because otherwise there would have been multiple
instances of customer details for each book purchased. Instead, the purchase data is
now placed in a new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

2 0596101015 Dec 19 2008

Normalization | 215

However, looking at the extracted Customer columns, now in Table 9-5, we can see that
there’s still more normalization work to do, because Darren Ryder’s details are still
duplicated. It could also be argued that First Normal Form Rule 2 (all columns should
contain a single value) has not been properly complied with, because the addresses
really need to be broken into separate columns for Address, City, State, and Zip code.

Table 9-5. The Customer details from Table 9-2

ISBN Customer name Customer address Purchase date

0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009

0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009

0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596006815 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 shows the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo that
is the table’s primary key, and that will most likely have been created using AUTO_INCRE
MENT. All the parts of the customers’ addresses have also been separated into distinct
columns to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

At the same time, in order to normalize Table 9-6, it was necessary to remove the
information on customer purchases, because otherwise there would have been multiple
instances of customer details for each book purchased. Instead, the purchase data is
now placed in a new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

2 0596101015 Dec 19 2008

Normalization | 215

 9

48. Look at Tables 9.8 through 9.11 (below) and make sure you understand why this design
is better than the one in Table 9.6.

49. (OPTIONAL) create those tables in MySQL (via phpMyAdmin) and "play" with them.

However, looking at the extracted Customer columns, now in Table 9-5, we can see that
there’s still more normalization work to do, because Darren Ryder’s details are still
duplicated. It could also be argued that First Normal Form Rule 2 (all columns should
contain a single value) has not been properly complied with, because the addresses
really need to be broken into separate columns for Address, City, State, and Zip code.

Table 9-5. The Customer details from Table 9-2

ISBN Customer name Customer address Purchase date

0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009

0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009

0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596006815 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 shows the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo that
is the table’s primary key, and that will most likely have been created using AUTO_INCRE
MENT. All the parts of the customers’ addresses have also been separated into distinct
columns to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

At the same time, in order to normalize Table 9-6, it was necessary to remove the
information on customer purchases, because otherwise there would have been multiple
instances of customer details for each book purchased. Instead, the purchase data is
now placed in a new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

2 0596101015 Dec 19 2008

Normalization | 215CustNo ISBN Date

3 0596005436 Jun 22 2009

4 0596006815 Jan 16 2009

Here, the CustNo column from Table 9-6 is reused as a key to tie the Customers and
Purchases tables together. Because the ISBN column is also repeated here, this table
can be linked with either of the Authors and Titles tables, too.

The CustNo column can be a useful key in the Purchases table, but it’s not a primary
key: a single customer can buy multiple books (and even multiple copies of one book).
In fact, the Purchases table has no primary key. That’s all right, because we don’t expect
to need to keep track of unique purchases. If one customer buys two copies of the same
book on the same day, we’ll just allow two rows with the same information. For easy
searching, we can define both CustNo and ISBN as keys—just not as primary keys.

There are now four tables, one more than the three we had initially
assumed would be needed. We arrived at this decision through the nor-
malization processes, by methodically following the First and Second
Normal Form rules, which made it plain that a fourth table called Pur
chases would also be required.

The tables we now have are: Authors (Table 9-3), Titles (Table 9-4), Customers (Ta-
ble 9-6), and Purchases (Table 9-7). Each table can be linked to any other using either
the CustNo or the ISBN keys.

For example, to see which books Darren Ryder has purchased, you can look him up in
Table 9-6, the Customers table, where you will see that his CustNo is 2. Armed with this
number, you can now go to Table 9-7, the Purchases table; looking at the ISBN column
here, you will see that he purchased titles 0596527403 and 0596101015 on December
19, 2008. This looks like a lot of trouble for a human, but it’s not so hard for MySQL.

To determine what these titles were, you can then refer to Table 9-4, the Titles table,
and see that the books he bought were Dynamic HTML and PHP Cookbook. Should
you wish to know the authors of these books, you could also use the ISBN numbers
you just looked up on Table 9-3, the Authors table, and you would see that ISBN
0596527403, Dynamic HTML, was written by Danny Goodman, and that ISBN
0596101015, PHP Cookbook, was written by David Sklar and Adam Trachtenberg.

Third Normal Form
Once you have a database that complies with both the First and Second Normal Forms,
it is in pretty good shape and you might not have to modify it any further. However, if
you wish to be very strict with your database, you can ensure that it adheres to the
Third Normal Form, which requires that data that is not directly dependent on the

216 | Chapter 9: Mastering MySQL

primary key but that is dependent on another value in the table should also be moved
into separate tables, according to the dependence.

For example, in Table 9-6, the Customers table, it could be argued that the State,
City, and Zip code keys are not directly related to each customer, because many other
people will have the same details in their addresses, too. However, they are directly
related to each other, in that the street Address relies on the City, and the City relies on
the State.

Therefore, to satisfy Third Normal Form for Table 9-6, you would need to split it into
Table 9-8, Table 9-9, Table 9-10, and Table 9-11.

Table 9-8. Third Normal Form Customers table

CustNo Name Address Zip

1 Emma Brown 1565 Rainbow Road 90014

2 Darren Ryder 4758 Emily Drive 23219

3 Earl B. Thurston 862 Gregory Lane 40601

4 David Miller 3647 Cedar Lane 02154

Table 9-9. Third Normal Form Zip codes table

Zip CityID

90014 1234

23219 5678

40601 4321

02154 8765

Table 9-10. Third Normal Form Cities table

CityID Name StateID

1234 Los Angeles 5

5678 Richmond 46

4321 Frankfort 17

8765 Waltham 21

Table 9-11. Third Normal Form States table

StateID Name Abbreviation

5 California CA

46 Virginia VA

17 Kentucky KY

21 Massachusetts MA

Normalization | 217

 10

PHP and MySQL

50. You will build a simple web-based application, using PHP to enable access to some of
the previously created tables.

• You have two options: running them on your local (MAMP/LAMP/WAMP) server
(recommended) or uploading them and running them on lamp.cse.fau.edu.

51. Modify Example 10.1 to refer to your database name and user credentials and save it to
a separate directory with the name login.php.

52. Populate the ‘classics’ table according to the examples in Chapter 8.
53. Copy Example 10.5 to your test directory and rename it to query.php.
54. Test query.php. You should see results similar to Fig. 10.1 in the book.

CHAPTER 10

Accessing MySQL Using PHP

If you worked through the previous chapters, you’ll be comfortable using both MySQL
and PHP. In this chapter, you will learn how to integrate the two by using PHP’s built-
in functions to access MySQL.

Querying a MySQL Database with PHP
The reason for using PHP as an interface to MySQL is to format the results of SQL
queries in a form visible in a web page. As long as you can log in to your MySQL
installation using your username and password, you can also do so from PHP. However,
instead of using MySQL’s command line to enter instructions and view output, you
will create query strings that are passed to MySQL. When MySQL returns its response,
it will come as a data structure that PHP can recognize instead of the formatted output
you see when you work on the command line. Further PHP commands can retrieve the
data and format it for the web page.

The Process
The process of using MySQL with PHP is:

1. Connect to MySQL.

2. Select the database to use.

3. Build a query string.

4. Perform the query.

5. Retrieve the results and output them to a web page.

6. Repeat Steps 3 through 5 until all desired data has been retrieved.

7. Disconnect from MySQL.

We’ll work through these sections in turn, but first it’s important to set up your login
details in a secure manner so people snooping around on your system have trouble
getting access to your database.

233

The results from each call to mysql_result are then incorporated within echo statements
to display one field per line, with an additional line feed between rows. Figure 10-1
shows the result of running this program.

Figure 10-1. The output from the query.php program in Example 10-5

As you may recall, we populated the classics table with five rows in Chapter 8, and
indeed, five rows of data are returned by query.php. But, as it stands, this code is actually
extremely inefficient and slow, because a total of 25 calls are made to the function
mysql_result in order to retrieve all the data, a single cell at a time. Luckily, there is a
much better way of retrieving the data: getting a single row at a time using the
mysql_fetch_row function.

In Chapter 9, I talked about First, Second, and Third Normal Form. You
may have noticed that the classics table doesn’t satisfy these, because
both author and book details are included within the same table. That’s
because we created this table before encountering normalization. How-
ever, for the purposes of illustrating access to MySQL from PHP, reusing
this table avoids the hassle of typing in a new set of test data, so we’ll
stick with it for the time being.

238 | Chapter 10: Accessing MySQL Using PHP

 11

55. Copy Example 10.8 to your test directory and rename it to sqltest.php.
56. Run sqltest.php. You should see results similar to Fig. 10.2 in the book.

57. Play with sqltest.php and test its add/delete capabilities.
58. Run Example 10.9 and ensure that it created a table (cats) as expected.
59. Run Example 10.10 and ensure that it works as expected.
60. Run Example 10.11 and ensure that it drops the table (cats) as expected.
61. Run Example 10.9 again and re-create the table.
62. Run Example 10.12 to populate the table with contents.
63. Add more records to the ‘cats’ table (either by editing Example 10.12 or manually via

phpMyAdmin).
64. Run Examples 10.13 through 10.16 and ensure that they work as expected.
65. Ensure that you (still) have tables ‘customers’ and ‘classics’ from Chapter 8. If not, re-

create them.
66. Run Example 10.17 and ensure that it works as expected.

 	

It first checks for any inputs that may have been made and then either inserts new data
into the classics table of the publications database or deletes a row from it, according
to the input supplied. Regardless of whether there was input, the program then outputs
all the rows in the table to the browser. Let’s see how it works.

The first section of new code starts by using the isset function to check whether values
for all the fields have been posted to the program. Upon such confirmation, each of the
lines within the if statement calls the function get_post, which appears at the end of
the program. This function has one small but critical job: fetching the input from the
browser.

The $_POST Array
I mentioned in Chapter 3 that a browser sends user input through either a GET request
or a POST request. The POST request is usually preferred, and we use it here. The web
server bundles up all the user input (even if the form was filled out with a hundred
fields) and puts it into an array named $_POST.

$_POST is an associative array, which you encountered in Chapter 6. Depending on
whether a form has been set to use the POST or the GET method, either the $_POST or the

Figure 10-2. The output from Example 10-8, sqltest.php

242 | Chapter 10: Accessing MySQL Using PHP

 12

Part	4-	Form	processing	and	AJAX	
This	part	uses	resources	from	W3Schools.	
	
1. (OPTIONAL)	Review	PHP	concepts,	following	the	steps	from	

http://www.w3schools.com/php/php_intro.asp	to	
http://www.w3schools.com/php/php_superglobals.asp		

2. Learn	about	form	submission	(including	the	important	aspects	of	validation	and	
sanitization)	and	processing,	following	the	steps	from	
http://www.w3schools.com/php/php_forms.asp	to	
http://www.w3schools.com/php/php_form_complete.asp		

3. Learn	more	about	the	use	of	PHP	and	MySQL	to	store,	retrieve,	and	organize	information	in	
databases,	following	the	steps	from	http://www.w3schools.com/php/php_mysql_intro.asp			
to	http://www.w3schools.com/php/php_mysql_select_limit.asp		

4. Learn	more	about	how	to	implement	AJAX	functionality	using	PHP,	especially	the	name	
suggestion	example,	following	the	steps	from	
http://www.w3schools.com/php/php_ajax_intro.asp	to	
http://www.w3schools.com/php/php_ajax_poll.asp		

5. (OPTIONAL)	Take	the	PHP	quiz	to	test	your	knowledge:	
http://www.w3schools.com/php/php_quiz.asp		

	

	

Part	5-	Cookies,	sessions,	authentication,	and	more…	

This	part	covers	selected	examples	from	Chapters	11,	12,	and	17	in	the	(Nixon	2014)	book4.	
	

1. Open example 11-1 in your favorite editor and save a copy as formtest.php.
2. Run formtest.php and make sure you understand what it's doing (not a whole

test, it turns out) (and how).
3. Open example 11-2 in your favorite editor and save a copy as formtest2.php.
4. Run formtest2.php and make sure you understand what it's doing (and how).
5. Look at Example 11-9 and ensure that you understand the concept of “input

sanitization” and how it’s implemented.
6. Open example 11-10 in your favorite editor and save a copy as convert.php.
7. Run convert.php and make sure you understand what it's doing (and how).

4 “Learning	PHP,	MySQL,	JavaScript,	CSS	&	HTML5”	4th	Edition	By	Robin	Nixon		
(O'Reilly	2014,	ISBN	978-1491918661)

 13

8. Study Fig 12-1 below carefully and ensure that you understand it.

9. Run Example 12-1 and make sure you understand what it's doing (and how).
10. Run Example 12-2 and make sure you understand what it's doing (and how).
11. Ensure that you have a valid login.php file (with your MySQL information and

credentials) in the same directory as the examples in this chapter.
12. Run Example 12-3 and make sure you understand what it's doing (and how).

More specifically, look at the differences between the users’ actual passwords,
their “salted” versions, and the values actually stored in the ‘users’ table in
MySQL.
This is what I got:

13. Close your browser and reopen it.
14. Open Example 12-4 in your favorite editor and save a copy as authenticate.php.
15. Run authenticate.php and make sure you understand what it's doing (and how).
16. Close your browser and reopen it.
17. Open Example 12-5 in your favorite editor and save a copy as authenticate2.php.
18. Open Example 12-6 in your favorite editor and save a copy as continue.php.
19. Run authenticate2.php and make sure you understand what it's doing (and how).
20. Open Example 12-8 in your favorite editor and save a copy as continue.php

(overwriting the previous file with the same name).
21. Close your browser and reopen it.
22. Run authenticate2.php again.
23. Press the browser’s reload button and see what happens. Can you understand

why?

Cookies are exchanged during the transfer of headers, before the actual HTML of a
web page is sent, and it is impossible to send a cookie once any HTML has been trans-
ferred. Therefore, careful planning of cookie usage is important. Figure 12-1 illustrates
a typical request and response dialog between a web browser and web server passing
cookies.

Figure 12-1. A browser/server request/response dialog with cookies

This exchange shows a browser receiving two pages:

1. The browser issues a request to retrieve the main page, index.html, at the website
http://www.webserver.com. The first header specifies the file and the second header
specifies the server.

2. When the web server at webserver.com receives this pair of headers, it returns some
of its own. The second header defines the type of content to be sent (text/html) and
the third one sends a cookie with the name name and the value value. Only then
are the contents of the web page transferred.

3. Once the browser has received the cookie, it will then return it with every future
request made to the issuing server until the cookie expires or is deleted. So, when
the browser requests the new page /news.html, it also returns the cookie name with
the value value.

4. Because the cookie has already been set, when the server receives the request to
send /news.html, it does not have to resend the cookie, but just returns the reques-
ted page.

276 | Chapter 12: Cookies, Sessions, and Authentication

 14

The next steps refer to resources from W3Schools.

24. Learn how to create, delete, retrieve, and check a cookie using PHP at

http://www.w3schools.com/php/php_cookies.asp
25. Learn how to create, manage, and destroy sessions in PHP at

http://www.w3schools.com/php/php_sessions.asp

Part	6-	(OPTIONAL)	PHP:	latest	developments	and	best	practices	
This	part	contains	a	compilation	of	useful	resources	for	keeping	up-to-date	with	the	latest	
developments	in	PHP	as	well	as	best	practices	and	miscellaneous	recommendations	for	writing	
better	PHP	code.	
	
The	following	sites/books	are	strongly	recommended:		
	

• “Hacking	 with	 PHP”	 (http://www.hackingwithphp.com/):	 free	 (ad-supported)	 online	
version	of	the	book	with	the	same	name	(previously	titled	"Practical	PHP	Programming").		

• “PHP:	 the	 right	way”	 (http://www.phptherightway.com/):	 frequently	 updated	 "quick	
reference	for	PHP	popular	coding	standards,	 links	to	authoritative	tutorials	around	the	
Web	and	what	the	contributors	consider	to	be	best	practices	at	the	present	time."		

• “Modern	PHP:	new	features	and	good	practices”,	book	by	Josh	Lockhart	(the	creator	of	
"PHP:	the	right	way"):	http://shop.oreilly.com/product/0636920033868.do.	Source	code	
for	the	book	examples	are	available	at:	https://github.com/codeguy/modern-php		

	

Part	7-	(OPTIONAL)	PhpStorm	
PhpStorm	(https://www.jetbrains.com/phpstorm/)	is	a	leading	IDE	for	PHP	development.	As	an	
FAU	student,	you	can	get	it	for	free	(see	https://www.jetbrains.com/student/	for	details).	
	
It	has	a	very	rich	documentation	(https://www.jetbrains.com/phpstorm/documentation/)	and	a	
collection	of	40+	videos	(https://www.youtube.com/playlist?list=PLQ176FUIyIUbfeFz-2EbDzwExRlD0Bc-w)	
that	teach	you	how	to	make	the	best	use	of	its	functionality.	
	
	
	
	

	

THE	END	

